Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 10: 997, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681428

RESUMO

The adaptive immune receptors repertoire is highly plastic, with its ability to produce antigen-binding molecules and select those with high affinity for their antigen. Species have developed diverse genetic and structural strategies to create their respective repertoires required for their survival in the different environments. Camelids, until now, considered as a case of evolutionary innovation because of their only heavy-chain antibodies, represent a new mammalian model particularly useful for understanding the role of diversity in the immune system function. Here, we review the structural and functional characteristics and the current status of the genomic organization of camel immunoglobulins (IG) or antibodies, α/ß and γ/δ T cell receptors (TR), and major histocompatibility complex (MHC). In camelid humoral response, in addition to the conventional antibodies, there are IG with "only-heavy-chain" (no light chain, and two identical heavy gamma chains lacking CH1 and with a VH domain designated as VHH). The unique features of these VHH offer advantages in biotechnology and for clinical applications. The TRG and TRD rearranged variable domains of Camelus dromedarius (Arabian camel) display somatic hypermutation (SHM), increasing the intrinsic structural stability in the γ/δ heterodimer and influencing the affinity maturation to a given antigen similar to immunoglobulin genes. The SHM increases the dromedary γ/δ repertoire diversity. In Camelus genus, the general structural organization of the TRB locus is similar to that of the other artiodactyl species, with a pool of TRBV genes positioned at the 5' end of three in tandem D-J-C clusters, followed by a single TRBV gene with an inverted transcriptional orientation located at the 3' end. At the difference of TRG and TRD, the diversity of the TRB variable domains is not shaped by SHM and depends from the classical combinatorial and junctional diversity. The MHC locus is located on chromosome 20 in Camelus dromedarius. Cytogenetic and comparative whole genome analyses revealed the order of the three major regions "Centromere-ClassII-ClassIII-ClassI". Unexpectedly low extent of polymorphisms and haplotypes was observed in all Old World camels despite different geographic origins.

2.
Data Brief ; 14: 507-514, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28856181

RESUMO

These data are presented in support of structural and evolutionary analysis of the published article entitled "The occurrence of three D-J-C clusters within the dromedary TRB locus highlights a shared evolution in Tylopoda, Ruminantia and Suina" (Antonacci et al., 2017) [1]. Here we describe the genomic structure and the gene content of the T cell receptor beta chain (TRB) locus in Camelus dromedarius. As in the other species of mammals, the general genomic organization of the dromedary TRB locus consists of a pool of TRBV genes located upstream of in tandem TRBD-J-C clusters, followed by a TRBV gene with an inverted transcriptional orientation. A peculiarity of the dromedary TRB locus structure is the presence of three TRBD-J-C clusters, which is a common feature of sheep, cattle and pig sequences.

4.
BMC Genomics ; 17(1): 634, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27528257

RESUMO

BACKGROUND: The bottlenose dolphin (Tursiops truncatus) is a mammal that belongs to the Cetartiodactyla and have lived in marine ecosystems for nearly 60 millions years. Despite its popularity, our knowledge about its adaptive immunity and evolution is very limited. Furthermore, nothing is known about the genomics and evolution of dolphin antigen receptor immunity. RESULTS: Here we report a evolutionary and expression study of Tursiops truncatus T cell receptor gamma (TRG) and alpha/delta (TRA/TRD) genes. We have identified in silico the TRG and TRA/TRD genes and analyzed the relevant mature transcripts in blood and in skin from four subjects. The dolphin TRG locus is the smallest and simplest of all mammalian loci as yet studied. It shows a genomic organization comprising two variable (V1 and V2), three joining (J1, J2 and J3) and a single constant (C), genes. Despite the fragmented nature of the genome assemblies, we deduced the TRA/TRD locus organization, with the recent TRDV1 subgroup genes duplications, as it is expected in artiodactyls. Expression analysis from blood of a subject allowed us to assign unambiguously eight TRAV genes to those annotated in the genomic sequence and to twelve new genes, belonging to five different subgroups. All transcripts were productive and no relevant biases towards TRAV-J rearrangements are observed. Blood and skin from four unrelated subjects expression data provide evidence for an unusual ratio of productive/unproductive transcripts which arise from the TRG V-J gene rearrangement and for a "public" gamma delta TR repertoire. The productive cDNA sequences, shared both in the same and in different individuals, include biases of the TRGV1 and TRGJ2 genes. The high frequency of TRGV1-J2/TRDV1- D1-J4 productive rearrangements in dolphins may represent an interesting oligo-clonal population comparable to that found in human with the TRGV9- JP/TRDV2-D-J T cells and in primates. CONCLUSIONS: Although the features of the TRG and TRA/TRD loci organization reflect those of the so far examined artiodactyls, genomic results highlight in dolphin an unusually simple TRG locus. The cDNA analysis reveal productive TRA/TRD transcripts and unusual ratios of productive/unproductive TRG transcripts. Comparing multiple different individuals, evidence is found for a "public" gamma delta TCR repertoire thus suggesting that in dolphins as in human the gamma delta TCR repertoire is accompanied by selection for public gamma chain.


Assuntos
Golfinho Nariz-de-Garrafa/genética , Regulação da Expressão Gênica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Sequência de Aminoácidos , Animais , Golfinho Nariz-de-Garrafa/metabolismo , Perfilação da Expressão Gênica , Loci Gênicos , Humanos , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , RNA/sangue , RNA/isolamento & purificação , RNA/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/classificação , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/classificação , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Alinhamento de Sequência , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...